

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 179 (2006) 1345-1350

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Synthesis, structure, and characterization of a new one-dimensional tellurite phosphate, $Ba_2TeO(PO_4)_2$

Kang Min Ok, P. Shiv Halasyamani*

Department of Chemistry and Center for Materials Chemistry, University of Houston, 136 Fleming Building, Houston, TX 77204-5003, USA

Received 9 December 2005; received in revised form 20 January 2006; accepted 22 January 2006 Available online 24 February 2006

Abstract

A new one-dimensional tellurite phosphate, Ba₂TeO(PO₄)₂ has been synthesized by standard solid-state reaction techniques using BaCO₃, TeO₂, and (NH₄)H₂PO₄ as reagents. The structure of Ba₂TeO(PO₄)₂ was determined by single-crystal X-ray diffraction. Ba₂TeO(PO₄)₂ crystallizes in the triclinic space group *P*-1 (No. 2), with a = 6.9461(16) Å, b = 7.3970(17) Å, c = 8.887(2) Å, $\alpha = 76.843(4)^{\circ}$, $\beta = 79.933(4)^{\circ}$, $\gamma = 75.688(4)^{\circ}$, V = 427.40(17) Å³, and Z = 2. Ba₂TeO(PO₄)₂ has a novel one-dimensional chain structure that is composed of PO₄ tetrahedra and TeO₅ polyhedra. Te⁴⁺ cations are in asymmetric coordination environments attributable to their lone pairs. The lone pairs on the Te⁴⁺ cations point in the [100] and [-100] direction and interact with the Ba²⁺ cations. Infrared, Raman, and UV–Vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dipole moment calculations are also presented.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Synthesis; Tellurite; Phosphate; One-dimensional structure

1. Introduction

Mixed metal tellurites exhibit varying structural topologies owing to the nonbonded electron pair on the Te^{4+} cation [1-4]. Attributable to this lone pair, a local acentric coordination environment is also observed. In fact, lone pair cations such as Te⁴⁺, not only exhibit asymmetric coordination environments, but these environments influence the material's properties [5-7]. The asymmetric coordination environment and lone pair are thought to be result of a second-order Jahn-Teller (SOJT) distortion [8–13]. A SOJT distortion reduces the energy between the highest occupied (HOMO) s-orbital and the lowest unoccupied (LUMO) p-orbital through s-p mixing [14–17]. The observed coordination numbers for Te^{4+} cations are three, four, and five, which result in various structural geometries such as distorted trigonal pyramidal, seesaw, and distorted square pyramidal, respectively [18,19]. Furthermore, when this distorted coordination geometry is combined with octahedral or tetrahedral moieties, a number of interesting framework architectures are possible. In addition with transition metal oxyphosphate compounds, a wide variety of structural topologies such as one-dimensional chains [1,20], two-dimensional layers [21–23], and three-dimensional frameworks [24–26] have been observed. Thus, combining these building blocks, Te⁴⁺ polyhedra and oxyphosphate groups, would result in interesting structural topologies. With these ideas in mind, we investigated materials in the Ba-Te-P-oxide system. With respect to tellurite phosphate oxides, a few materials have been reported, namely, $Te_2O_3(HPO_4)$ [27,28], Te_8O_{10} $(PO_4)_4$ [29], A_2 TeMo₂O₆ $(PO_4)_2$ (A = K, Rb, Cs, or Tl) [30], and BaTeNbO₄(PO₄) [31]. Structurally the materials are different; BaTeNbO₄(PO₄) contains two-dimensional layers; whereas, $Te_2O_3(HPO_4)$, $Te_8O_{10}(PO_4)_4$, and $A_2TeMo_2O_6$ (PO₄)₂ exhibit three-dimensional structures consisting of asymmetric TeO₄ and TeO₅ polyhedra that are linked through oxygen atoms. In this paper, we report the synthesis, structure, and characterization of a uni-dimensional material, $Ba_2TeO(PO_4)_2$, representing a new quaternary tellurite phosphate with a novel crystal structure.

^{*}Corresponding author. Fax: +17137430796.

E-mail address: psh@uh.edu (P. Shiv Halasyamani).

^{0022-4596/\$ -} see front matter \odot 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2006.01.045

2. Experimental

2.1. Synthesis

BaCO₃ (Aldrich, 99 + %), TeO₂ (Aldrich, 99 + %), and $(NH_4)H_2PO_4$ (Aldrich, 98 + %) were used as received. Single-crystals of Ba₂TeO(PO₄)₂ were prepared by using excess amount of TeO₂ in order to promote crystal growth. 0.197 g (1.00 mmol) of BaCO₃, 0.115 g (1.00 mmol) of $(NH_4)H_2PO_4$, and 0.319 g (2.00 mmol) of TeO₂ were mixed with an agate mortar and pestle and introduced into a platinum crucible. The crucible was heated to 650 °C for 15 h and then cooled down to 500 °C at a rate of $6 °C h^{-1}$ before being quenched to room temperature. Colorless block-shaped crystals of Ba2TeO(PO4)2 (42% yield based on tellurium) were recovered from the crucible with TeO₂. Pure polycrystalline Ba₂TeO(PO₄)₂ was synthesized through standard solid-state reaction. A stoichiometric mixture of BaCO₃ (1.316 g, 6.66 mmol) with TeO₂ (0.532 g, 3.33 mmol) and $(NH_4)H_2PO_4$ (0.767 g, 6.66 mmol) was thoroughly ground with an agate mortar and pestle and pressed into a pellet, which was introduced into an alumina crucible. The pellet was heated to 650 °C at a rate of 5 °C min⁻¹, held for 48 h, and cooled to room temperature $(5 \,^{\circ}\mathrm{C\,min^{-1}})$ with an intermediate regrinding. Powder X-ray diffraction (XRD) on the resultant white powder indicated a single-phase product, and was in a good agreement with the calculated pattern from the singlecrystal structure (see supporting information).

2.2. Crystallographic determination

The structure of $Ba_2TeO(PO_4)_2$ was determined by standard crystallographic methods. A colorless block crystal $(0.10 \times 0.10 \times 0.12 \text{ mm}^3)$ was used for single-crystal XRD. Room temperature intensity data were collected on a Siemens SMART diffractometer equipped with a 1K CCD area detector using graphite monochromated MoKa radiation. A hemisphere of data was collected using a narrow-frame method with scan widths of 0.30° in omega, and an exposure time of $30 \,\mathrm{s}$ frame⁻¹. The first 50 frames were remeasured at the end of the data collection to monitor instrument and crystal stability. The maximum correction applied to the intensities was <1%. The data were integrated using the Siemens SAINT program [32], with the intensities corrected for Lorentz, polarization, air absorption, and absorption attributable to the variation in the path length through the detector faceplate. Ψ -scan was used for the absorption correction on the hemisphere of data. The data were solved and refined using SHELXS-97 and SHELXL-97, respectively [33,34]. All of the atoms were refined with anisotropic displacement parameters and converged for $I > 2\sigma(I)$. All calculations were performed using the WinGX-98 crystallographic software package [35]. Crystallographic data, atomic coordinates and displacement parameters, and selected bond distances and angles for $Ba_2TeO(PO_4)_2$ are given in Tables 1-3. The

Table 1	
Crystal data for Ba ₂ TeO(PO ₄) ₂	

Empirical formula	$Ba_2TeO(PO_4)_2$
Formula weight	608.22
Crystal system	Triclinic
Space group	<i>P</i> -1 (No. 2)
Z	2
a (Å)	6.9461(16)
b (Å)	7.3970(17)
<i>c</i> (Å)	8.887(2)
α (°)	76.843(4)
β (°)	79.933(4)
γ (°)	75.688(4)
Volume ($Å^3$)	427.40(17)
Temperature (K)	293.0(2)
$\rho_{\rm calc} (\rm g \rm cm^{-3})$	4.726
$\mu (\mathrm{mm}^{-1})$	12.902
Crystal color	Colorless
Crystal habit	Block
Crystal size	$0.10 \times 0.10 \times 0.12$
Reflections collected	2611
Independent reflections	1834
<i>R</i> (int)	0.0261
T_{\min}, T_{\max}	0.225, 0.267
No. of parameters	128
Goodness-of-fit on F^2	1.212
X-ray radiation $(\lambda, \text{ Å})$	ΜοΚα (0.71073)
θ range (°)	2.37-27.98
Limiting indices	$-8 \le h \le 8, -9 \le k \le 9, -11 \le l \le 7$
Refinement method	Full-matrix least-squares on F^2
	[SHELXL-97]
Final $R^{a,b}$ indices $[I > 2\sigma(I)]$	$R(F) = 0.0230, R_w(F_o^2) = 0.0624$
R indices (all data)	$R(F) = 0.0242, R_{\rm w}(F_{\rm o}^2) = 0.0629$
Largest diff. peak and hole $(e \mathring{A}^{-3})$	0.848 and -0.809

^a
$$R(F) = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|.$$

^b $R_w(F_o^2) = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{1/2}.$

Table 2 Atomic coordinates for Ba₂TeO(PO₄)₂

Atom	X	У	Ζ	$U_{\rm eq}^{\ a}$ (Å ²)
Ba(1)	0.3691(1)	0.8049(1)	0.4162(1)	0.013(1)
Ba(2)	0.1056(1)	0.3830(1)	0.2434(1)	0.013(1)
Te(1)	0.3525(1)	0.8881(1)	0.9547(1)	0.010(1)
P(1)	0.1351(2)	1.1218(2)	0.6483(2)	0.011(1)
P(2)	0.3755(2)	0.5215(2)	0.8164(2)	0.011(1)
O(1)	0.5512(6)	0.3504(6)	0.8568(5)	0.014(1)
O(2)	0.2726(6)	1.1107(6)	0.7801(5)	0.016(1)
O(3)	0.6200(6)	0.9284(6)	0.8986(5)	0.014(1)
O(4)	0.4647(6)	0.7041(6)	0.8018(5)	0.015(1)
O(5)	0. 1972(6)	0.5292(6)	0.9400(5)	0.015(1)
O(6)	0.3285(6)	0.5215(6)	0.6554(4)	0.015(1)
O(7)	0.0652(7)	0.9354(6)	0.6776(5)	0.020(1)
O(8)	0.2786(6)	1.1481(6)	0.4967(5)	0.016(1)
O(9)	-0.0395(6)	1.2917(6)	0.6520(5)	0.020(1)

^a U_{eq} is defined as one third of the trace of the orthogonalized U_{ii} tensor.

X-ray powder diffraction data were collected on a Scintag XDS2000 diffractometer at room temperature (CuK α radiation, $\theta - \theta$ mode, flat plate geometry) equipped with

Table 3 Selected bond distances (Å) and angles (°) for $Ba_2TeO(PO_4)_2$

Bond distances		Bond valence
Te(1)-O(1)	2.198(4)	0.5431
Te(1) - O(2)	2.028(4)	0.8294
Te(1)-O(3)	1.917(4)	1.0948
Te(1)-O(3)	2.144(4)	0.6197
Te(1) - O(4)	2.062(4)	0.7610
Bond valence sum of Te(1)		3.8480
P(1)-O(2)	1.612(4)	1.0183
P(1)-O(7)	1.526(4)	1.2417
P(1)-O(8)	1.534(4)	1.2184
P(1)-O(9)	1.517(4)	1.2656
Bond valence sum of P(1)		4.7440
P(2)-O(1)	1.550(4)	1.1742
P(2)-O(4)	1.591(4)	1.0696
P(2)-O(5)	1.504(4)	1.3048
P(2)-O(6)	1.522(4)	1.2531
Bond valence sum of P(2)		4.8017
Bond angles		
O(3) - Te(1) - O(2)	87.02(17)	
O(3) - Te(1) - O(4)	79.72(16)	
O(2) - Te(1) - O(4)	92.33(16)	
O(3) - Te(1) - O(3)	74.62(17)	
O(2) - Te(1) - O(3)	92.26(16)	
O(4) - Te(1) - O(3)	153.65(15)	
O(3) - Te(1) - O(1)	91.06(16)	
O(2) - Te(1) - O(1)	178.04(15)	
O(4) - Te(1) - O(1)	87.75(15)	
O(3)-Te(1)-O(1)	86.81(15)	

Peltier germanium solid-state detector in the 2θ range 5–60° with a step size of 0.02°, and a step time of 1 s.

2.3. Spectroscopic characterizations

Infrared data were recorded on a Matteson FTIR 5000 spectrometer in the $400-4000 \text{ cm}^{-1}$ range, with the sample pressed between two KBr pellets. The Raman spectrum was recorded at room temperature on a Digilab FTS 7000 spectrometer equipped with a germanium detector with the powder sample placed in separate capillary tubes. Excitation was provided by a Nd:YAG laser at a wavelength of 1064 nm, and the output laser power was 544 mW. The spectral resolution was about 4 cm^{-1} , and 200 scans were collected. UV-Vis diffuse reflectance data for Ba2TeO (PO₄)₂ were collected with a Varian Cary 500 scan UV-Vis-NIR spectrophotometer over the spectral range 200-1500 nm at room temperature. Polytetrafluoroethylene was used as a reference material. Reflectance spectrum was converted to absorbance with the Kubelka-Munk values [36].

2.4. Thermogravimetric analysis

Thermogravimetric analysis was performed on a TGA 2950 Thermogravimetric Analyzer (TA Instruments). The

polycrystalline Ba₂TeO(PO₄)₂ sample was contained within a platinum crucible and heated at a rate of $10 \,^{\circ}\text{C min}^{-1}$ from room temperature to 900 °C in static air.

3. Results and discussion

3.1. Structure

Ba₂TeO(PO₄)₂ is a new one-dimensional tellurite phosphate compound containing chains that run parallel to the *b*-axis. The chains are composed of PO₄ and TeO₅ units connected by P–O–Te and Te–O–Te bonds (see Fig. 1). As can be seen in Fig. 1, the two $[P(1)O_{1/2}O_{3/1}]^{2-}$ and $[P(2)O_{2/2}O_{2/1}]^{-}$ anionic tetrahedra and a $[TeO_{5/2}]^{-}$ polyhedron link to form one-dimensional chains. The two $[TeO_{5/2}]^{-}$ polyhedra share edges through O(3) and produce Te₂O₈ dimers (see Fig. 2). These dimers are further connected by the $[P(2)O_{2/2}O_{2/1}]^{-}$ anions through O(1) and O(4) to form a chain along [010] direction. An intrachain connection is made, between the $[P(1)O_{1/2}O_{3/1}]^{2-}$ and $[TeO_{5/2}]^{-}$ polyhedra through O(2) (see Fig. 1). The lone pairs on the Te⁴⁺ point in the [100] and [-100] direction which interact with the Ba²⁺ cations.

There are two crystallographically unique P⁵⁺ cations in the Ba₂TeO(PO₄)₂ structure. Both P^{5+} cations are in tetrahedral environments connected to four oxygen atoms. The P-O bond distances for each PO₄ tetrahedron range from 1.504(4) to 1.612(4) Å. The O-P-O bond angles range from 103.1(2) to 114.3(2)°. The Te^{4+} cation is in an asymmetric coordination environment attributable to its stereoactive lone pair. The Te⁴⁺ cation is in distorted square pyramidal environment bonded to five oxygen atoms resulting in TeO_5 polyhedra (see Fig. 2). The Te-Obond distances range from 1.917(4) to 2.198(4) Å. The O-Te-O bond angles range from 74.62(17) to $178.04(15)^{\circ}$. The two unique Ba^{2+} cations are in eight- and ten-fold coordination environments with Ba-O contacts ranging from 2.655(4) to 3.282(4) Å. In connectivity terms, Ba₂ TeO(PO₄)₂ can be formulated as consisting of $\{[TeO_{5/2}]^ [P(1)O_{1/2}O_{3/1}]^{2-}$ $[P(2)O_{2/2}O_{2/1}]^{-}\}^{4-}$ anionic chains, with charge balance maintained by the two Ba²⁺ cations. Bond valence calculations [37,38] resulted in values range 2.04-2.16, 4.74-4.80, and 3.85 for Ba²⁺, P⁵⁺, and Te^{4+} , respectively.

3.2. Infrared and Raman spectroscopy

The infrared and Raman spectra of $Ba_2TeO(PO_4)_2$ revealed Te–O, P–O, and Te–O–P vibrations. Te–O vibrations are observed in both the IR and Raman and found around 650–880 and 430 cm⁻¹. P–O vibrations are also observed in both the IR and Raman and occur at about 950–1150 and 450–570 cm⁻¹. A band, occurring around 600 cm⁻¹, is attributable to Te–O–P vibration. The infrared and Raman vibrations and assignments for $Ba_2TeO(PO_4)_2$ are listed in Table 4. The assignments are consistent with those previously reported [31,39,40].

Fig. 1. Ball-and-stick diagram showing one-dimensional structure of Ba₂TeO(PO₄)₂ in the *bc*-plane. Note the chains run along the *b*-axis.

Fig. 2. ORTEP (50% probability ellipsoids) drawing for Ba₂TeO(PO₄)₂. The Ba²⁺ cations are removed for clarity. Note 4-coordinate tetrahedral and 5-coordinate distorted pyramidal environments for P⁵⁺ and Te⁴⁺ cations, respectively.

3.3. UV–Vis diffuse reflectance spectroscopy

 $Ba_2TeO(PO_4)_2$ is white and the spectrum shows that it is transparent. Absorption (*K*/*S*) data were calculated from the following Kubelka–Munk function:

$$F(R) = \frac{(1-R)^2}{2R} = \frac{K}{S},$$

Table 4 Infrared and Raman vibrations for $Ba_2TeO(PO_4)_2$

Р-О	Te-O	P-O-Te
$IR (cm^{-1})$		
1149	887	619
1103	831	603
1081	656	
1047	430	
983		
964		
576		
557		
538		
453		
Raman (cm^{-1})		
1161	860	613
1095	837	
1060	659	
972	432	
952		
574		
555		
536		
505		
459		

where *R* represents the reflectance, *K* the absorption, and *S* the scattering. In a K/S vs. *E* (eV) plot, extrapolating the linear part of the rising curve to zero provides the onset of absorption at 3.6 eV for Ba₂TeO(PO₄)₂. The overall band gap for the material may be attributable to the degree of the distortions arising from TeO₅ and PO₄ polyhedra. The

UV–Vis diffuse reflectance spectrum for $Ba_2TeO(PO_4)_2$ is deposited in the Supporting Information.

3.4. Thermogravimetric analysis

The thermal behavior of Ba₂TeO(PO₄)₂ was investigated using thermogravimetric analysis. Ba₂TeO(PO₄)₂ is not stable at high temperature. A single-step decomposition occurs at 730 °C attributable to the condensation of phosphate groups with simultaneous volatilization of TeO₂ at higher temperature. Powder XRD measurement on the calcined material revealed Ba₂TeO(PO₄)₂ decomposed to Ba₂P₂O₇ [41]. The decomposition is consistent with the following reaction:

$$Ba_2TeO(PO_4)_2 \xrightarrow{\Delta} Ba_2P_2O_7 + TeO_2.$$

The thermogravimetric analysis diagram for Ba_2TeO (PO₄)₂ and powder XRD pattern for calcined material, $Ba_2P_2O_7$ are deposited in the Supporting Information.

3.5. Dipole moment calculations

Although Ba₂TeO(PO₄)₂ crystallizes in centrosymmetric space group, the material contains a cation in an asymmetric coordination environment, i.e., Te⁴⁺. One of our motivations for investigating materials containing asymmetric lone pair cations is to better understand these coordination environments. The direction and magnitude of the distortions in the TeO₅ polyhedra may be quantified by determining the local dipole moments. This approach has been described earlier [42-44]. The method uses a bond-valence approach to calculate the direction and magnitude of the local dipole moments. With the lone pair polyhedra, the lone pair is given a charge of -2 and the localized Te⁴⁺-lone pair distance is estimated to be 1.25 Å [45]. Using this methodology, the dipole moment for the TeO₅ polyhedra is approximately 7.14 Debyes (D). In fact, an examination of 30 examples of TeO₅ polyhedra reveals that the dipole moments range from 4.31 to 10.82 D and average value of 8.33 + 1.33 D (see Table 5). With Bi₁₀Te₂O₁₇I₄ [46], a relatively small dipole moment of 4.31 D is estimated, which may be attributable to the disorder between $Bi(3)^{3+}$ and $Te(1)^{4+}$ cations. The TeO₅ polyhedron contains shorter bond distances than BiO₅ group. In addition, Te⁴⁺ lone pair is more "directional" than that of Bi^{3+} based on the coordination environment. We are in the process of examining all Te⁴⁺ oxides that contain TeO₃, TeO₄, or TeO₅ groups in order to better understand the asymmetric polar environment [47].

4. Supporting information available

Powder XRD (calculated and experimental), UV–Vis diffuse reflectance spectrum, IR and Raman spectra, thermogravimetric analysis diagram for $Ba_2TeO(PO_4)_2$, and powder XRD pattern for calcined material, $Ba_2P_2O_7$

Table 5 Calculation of dipole moments for TeO₅ polyhedra

Compound	TeO ₅	Dipole moment (D)
Ba ₂ TeO(PO ₄) ₂ ^a	Te(1)O ₅	7.14
$BaTe_2O_6$ [48]	$Te(2)O_5$	7.75
Bi ₂ Te ₂ O ₈ [49]	$Te(2)O_5$	7.19
Ca(TeO) ₂ (TeO ₆) [50]	$Te(1)O_5$	8.40
Cs ₂ Te ₄ O ₉ [51]	$Te(2)O_5$	8.58
In ₂ Te ₃ O ₉ [52]	$Te(2)O_5$	10.08
K ₂ Te ₄ O ₉ [19]	$Te(1)O_5$	7.46
$K_2Te(Te_3O_{12})$ [53]	$Te(5)O_5$	8.41
$Na_2Te_4O_9$ [54]	$Te(1)O_5$	7.96
NiTe ₂ O ₅ [55]	$Te(2)O_5$	7.79
Te ₂ Se ₂ O ₈ [56]	$Te(1)O_5$	7.64
	$Te(2)O_5$	7.13
Te ₃ SeO ₈ [57]	$Te(1)O_5$	8.64
Te ₈ O ₁₀ (PO ₄) ₄ [29]	$Te(1)O_5$	10.82
	$Te(2)O_5$	9.64
TeSeO ₄ [58]	$Te(1)O_5$	7.89
$Tl_2Te_2O_5$ [59]	$Te(1)O_5$	8.90
$(Ag_{0.4}Na_{1.6})Te_5O_{14}$ [60]	$Te(3)O_5$	7.78
	$Te(4)O_5$	5.43
$Bi_4Te_2O_9Br_2$ [61]	$Te(2)O_5$	8.22
Bi ₁₀ Te ₂ O ₁₇ I ₄ [46]	$Te(1)O_5$	4.31
$Ca_2Te_2O_4(CO_3)_2$ [62]	$Te(1)O_5$	7.71
GdTe ₂ O ₅ Cl [63]	$Te(1)O_5$	9.74
InTeO ₃ Cl [64]	$Te(1)O_5$	9.72
Na ₂ MoTe ₄ O ₁₂ [65]	$Te(2)O_5$	7.89
Na ₂ WTe ₄ O ₁₂ [65]	$Te(2)O_5$	7.73
NaGaTe ₂ O ₆ [66]	$Te(1)O_5$	10.80
NdTe ₂ O ₅ Br [67]	$Te(2)O_5$	10.23
$NdTe_2O_5Cl$ [63]	$Te(1)O_5$	9.02
NH ₄ TeTeO ₅ (OH)	$Te(1)O_5$	8.64
[68]		
Average	TeO ₅	8.33 (±1.33)

D = Debyes.

^aThis work.

are available (PDF). Further details of the crystal structure investigation can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: (49) 7247-808-666; e-mail: crysdata@fiz. karlsruhe.de) on quoting the depository number CSD-416032.

Acknowledgments

We thank the Robert A. Welch Foundation for support. This work was also supported by the NSF-Career Program through DMR-0092054, and by the NSF-Chemical Bonding Center. P.S.H. is a Beckman Young Investigator. We also acknowledge Yushin Park and Prof. Rigoberto Advincula for assistance in obtaining the Raman spectra.

References

 M.F. Zid, T. Jouini, N. Jouini, C.R. Acad. Sci. Ser. IIc: Chim. 309 (1989) 343.

- [2] Y. Arnaud, M.T. Averbuch-Pouchot, A. Durif, J. Guidot, Acta Crystallogr. B 32 (1976) 1417.
- [3] J.A. Alonso, A. Castro, E. Gutierrez-Puebla, M.A. Monge, I. Rasines, C. Ruiz-Valero, J. Solid State Chem. 69 (1987) 36.
- [4] V. Balraj, K. Vidyasagar, Inorg. Chem. 37 (1998) 4764.
- [5] R. Seshadri, N.A. Hill, Chem. Mater. 13 (2001) 2892.
- [6] U.V. Waghmare, N.A. Spaldin, H.C. Kandpal, R. Seshadri, Phys. Rev. B 67 (2003) 125111.
- [7] P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Chem. Mater. 17 (2005) 1376.
- [8] U. Opik, M.H.L. Pryce, Proc. R. Soc. London A 238 (1957) 425.
- [9] R.F.W. Bader, Mol. Phys. 3 (1960) 137.
- [10] R.F.W. Bader, Can. J. Chem. 40 (1962) 1164.
- [11] R.G. Pearson, J. Am. Chem. Soc. 91 (1969) 4947.
- [12] R.G. Pearson, J. Mol. Struct. (THEOCHEM) 103 (1983) 25.
- [13] R.A. Wheeler, M.-H. Whangbo, T. Hughbanks, R. Hoffmann, J.K. Burdett, T.A. Albright, J. Am. Chem. Soc. 108 (1986) 2222.
- [14] H. Nikol, A. Vogler, J. Am. Chem. Soc. 113 (1991) 8988.
- [15] H. Nikol, A. Vogler, Inorg. Chem. 32 (1993) 1072.
- [16] G.W. Watson, S.C. Parker, J. Phys. Chem. B. 103 (1999) 1258.
- [17] G.W. Watson, S.C. Parker, G. Kresse, Phys. Rev. B 59 (1999) 8481.[18] M. Tatsumisago, T. Minami, Y. Kowada, H. Adachi, Phys. Chem.
- Glasses 35 (1994) 89. [19] C.R. Becker, S.L. Tagg, J.C. Huffman, J.W. Zwanziger, Inorg.
- Chem. 36 (1997) 5559. [20] M.M. Borel, A. Leclaire, J. Chardon, C. Michel, J. Provost, B.
- Raveau, J. Solid State Chem. 135 (1998) 302.
- [21] M. Fakhfakh, M.F. Zid, N. Jouini, M. Tournoux, J. Solid State Chem. 102 (1993) 368.
- [22] T. Hoareau, A. Leclaire, M.M. Borel, A. Grandin, B. Raveau, J. Solid State Chem. 116 (1995) 87.
- [23] M.M. Borel, A. Leclaire, J. Chardon, J. Provost, B. Raveau, J. Solid State Chem. 137 (1998) 214.
- [24] M. Fakhfakh, A. Verbaere, N. Jouini, Eur. J. Solid State Inorg. Chem. 29 (1992) 563.
- [25] M. Fakhfakh, S. Ammar-Merah, N. Jouini, Solid State Sci. 2 (2000) 587.
- [26] A. Leclaire, J. Chardon, J. Provost, B. Raveau, J. Solid State Chem. 163 (2002) 308.
- [27] H. Mayer, Z. Kristallogr. 141 (1975) 354.
- [28] N.W. Alcock, W.D. Harrison, Acta Crystallogr. B 38 (1982) 1809.
- [29] H. Mayer, G. Pupp, Z. Kristallogr. 145 (1977) 321.
- [30] A. Guesdon, B. Raveau, Chem. Mater. 12 (2000) 2239.
- [31] K.M. Ok, J. Orzechowski, P.S. Halasyamani, Inorg. Chem. 43 (2004) 964.
- [32] SAINT, Version 4.05, Siemens Analytical X-ray Systems, Inc., Madison, WI, 1995.
- [33] G.M. Sheldrick, SHELXS-97—A Program for Automatic Solution of Crystal Structures, University of Goettingen, Goettingen, Germany, 1997.
- [34] G.M. Sheldrick, SHELXL-97—A Program for Crystal Structure Refinement, University of Goettingen, Goettingen, 1997.
- [35] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.

- [36] P. Kubelka, F. Munk, Z. Tech. Phys. 12 (1931) 593.
- [37] I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244.
- [38] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.
- [39] A.A. Belik, F. Izumi, M. Azuma, T. Kamiyama, K. Oikawa, K.V. Pokholok, B.I. Lazoryak, M. Takano, Chem. Mater. 17 (2005) 5455.
- [40] P.E. Tomaszewski, M. Maczka, A. Majchrowski, A. Waskowska, J. Hanuza, Solid State Sci. 7 (2005) 1201.
- [41] A.A. El Beghitti, A. Elmarzouki, A. Boukhari, E.M. Holt, Acta Crystallogr. C 51 (1995) 1478.
- [42] P.A. Maggard, T.S. Nault, C.L. Stern, K.R. Poeppelmeier, J. Solid State Chem. 175 (2003) 25.
- [43] H.K. Izumi, J.E. Kirsch, C.L. Stern, K.R. Poeppelmeier, Inorg. Chem. 44 (2005) 884.
- [44] K.M. Ok, P.S. Halasyamani, Inorg. Chem. 44 (2005) 3919.
- [45] J. Galy, G. Meunier, J. Solid State Chem. 13 (1975) 142.
- [46] P.S. Berdonosov, D.O. Charkin, A.M. Kusainova, C.H. Hervoches, V.A. Dolgikh, P. Lightfoot, Solid State Sci. 2 (2000) 553.
- [47] K.M. Ok, P.S. Halasyamani, in preparation.
- [48] M. Kocak, C. Platte, M. Troemel, Acta Crystallogr. B 35 (1979) 1439.
- [49] P. Thomas, B. Jeansannetas, J.C. Champarnaud-Mesjard, B. Frit, Eur. J. Solid State Inorg. Chem. 33 (1996) 637.
- [50] H. Effenberger, J. Zemann, H. Mayer, Am. Miner. 63 (1978) 847.
- [51] B.O. Loopstra, K. Goubitz, Acta Crystallogr. C 42 (1986) 520.
- [52] E. Philippot, R. Astier, W. Loeksmanto, M. Maurin, J. Moret, Rev. Chim. Miner. 15 (1978) 283.
- [53] F. Daniel, J. Moret, M. Maurin, E. Philippot, Acta Crystallogr. B 34 (1978) 1782.
- [54] S.L. Tagg, J.C. Huffman, J.W. Zwanziger, Chem. Mater. 6 (1994) 1884.
- [55] C. Platte, M. Troemel, Acta Crystallogr. B 37 (1981) 1276.
- [56] C. Delage, A. Carpy, M. Goursolle, C.R. Acad. Sci. C Chim. 295 (1982) 981.
- [57] C. Pico, A. Castro, M.L. Veiga, E. Gutierrez-Puebla, M.A. Monge, C. Ruiz-Valero, J. Solid State Chem. 63 (1986) 172.
- [58] Y. Porter, N.S.P. Bhuvanesh, P.S. Halasyamani, Inorg. Chem. 40 (2001) 1172.
- [59] B. Jeansannetas, P. Thomas, J.C. Champarnaud-Mesjard, B. Frit, Mater. Res. Bull. 33 (1998) 1709.
- [60] W. Loeksmanto, J. Moret, M. Maurin, E. Philippot, J. Solid State Chem. 33 (1980) 209.
- [61] L.N. Kholodkovskaya, V.A. Dolgikh, B.A. Popovkin, J. Solid State Chem. 116 (1995) 406.
- [62] R. Fischer, F. Pertlik, J. Zemann, Can. Miner. 13 (1975) 383.
- [63] G.B. Nikiforov, A.M. Kusainova, P.S. Berdonosov, V.A. Dolgikh, P. Lightfoot, J. Solid State Chem. 146 (1999) 473.
- [64] E. Gaudin, J.-P. Chaminade, A. El Abed, J. Darriet, Acta Crystallogr. C 57 (2001) 1004.
- [65] V. Balraj, K. Vidyasagar, Inorg. Chem. 38 (1999) 5809.
- [66] R. Miletich, F. Pertlik, J. Alloys Compd. 268 (1998) 107.
- [67] I.V. Tarasov, V.A. Dolgikh, L.G. Aksel'rud, P.S. Berdonosov, B.A. Ponovkin, Zh. Neorg. Khim. 41 (1996) 1243.
- [68] E. Philippot, L. Benmiloud, M. Maurin, J. Moret, Acta Crystallogr. B 35 (1979) 1986.